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A large numberof papershave beenpublishedattemptingto give some

analytical basis for the performanceof Turbo-codes. It has been shown that

performanceimproveswith increasedinterleaverlength. Also procedureshave

beengiven to pick the bestconstituentrecursivesystematicconvolutionalcodes

(RSCC's). However testing by computer simulation is still required to verify

these results. This thesis begins by describing the encoding and decoding

schemesused. Next simulationresultson severalmemory4 RSCC's areshown.

It is found that the best BER performanceat low Eb/Nois not given by the

RSCC's that were found using the analytic techniquesgiven so far. Next the

resultsaregiven from simulationsusing a smallermemoryRSCCfor one of the

constituentencoders. Significant reduction in decodingcomplexity is obtained

with minimal lossin performance.Simulationresultsarethengiven for arate 1/3

Turbo-codewith the result that this code performedas well asa rate V2 Turbo-

code as measured by the distance from their respective Shannon limits. Finally

the results of simulations where an inaccurate noise variance measurement was



usedaregiven. From this it is observedthatTurbo-decodingis fairly stablewith

regardto noisevariancemeasurement.
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Chapter 1

Introduction

Low bit error rates (BER) in high noise environments have required the

use of very complex channel coding and decoding schemes. According to

Shannon's theorem very long random codes can approach Shannon's limit [1]

This limit is defined as zero probability of bit error (usually this is taken as BER

of 10 -5 or some other convenient figure of merit) when the E_fNo is larger than
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Figure 1.1 The Limits for Reliable Communication



a given value which depends on the rate of the code. EtfNo required for given

rates is shown in Figure 1.1 assuming no intersymbol interference, and minimum

Nyquist bandwidth [2]. However, long random codes are, in general, extremely

difficult to decode. In order to decrease the complexity of the decoder several

approaches have been tried. A typical practice, introduced by Forney [3], is the

concatenation of more than one code. This method is composed of coding the

information bits by an outer encoder and inputting the output of the outer encoder

into a second inner encoder which is then output to the channel. The bits can be

decoded by decoding the output of the channel by the inner decoder first and using

that as an input to the outer decoder. A typical example of this would be a Reed

Solomon code as an outer code with a convolutional code as the inner code as

shown in Figure 1.2.

source
Reed-

Solomon

Encoder

Reed-

Solomon

Decoder

Convolu-

tional

Encoder

Channel

sink Convolu-

tional

Decoder

Figure 1.2 A Serial Concatenated Scheme
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Recentlya new concatenationschemehasbeenproposed.This schemeis

called parallel concatenation. Parallel concatenationis done by encoding

informationstreamsthatarelinked throughapseudo-randominterleaverasshown

in Figure 1.3.Delaysarenot shownin the figure. The input to the interleaveris

presentedas blocks of bits. The processof using parallel concatenationin

conjunctionwith recursivesystematicconvolutioncodes(RSCC's) hasproduced

codes, nicknamed Turbo-codes [4], that have phenomenalerror correcting

capacityat very low bit energyto noisevarianceratios (EtdNo). For examplethe

rate1/2code(accomplishedby puncturingeveryotherbit from eachRSCCoutput)

in [4] wasfound to haveaBER of 10.5atEdNoof only .7 dB. This is asavingsof

about 9 dB over uncoded BPSK which is shown in Figure 1.4, but more

importantly it is within .7 dB of the Shannonlimit for a rate Y2code(seeFigure

1.1).

dk dk

r

Interleaver [

Figure 1.3 The General Encoding Scheme for Turbo-codes.



4

While thesecodeshavevery goodBER performancetherearesomedifficulties

with thesecodes.Oneof theproblemsis thefact thatthedecodingof thesecodes

requiressoft outputs.Theoptimaldecodingalgorithm,theMaximum A posteriori

Probability (MAP) algorithm is very complex due to the number of operations

neededandtheamount
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Figure 1.4 BER vs EtCNo for Uncoded BPSK

of memory required. There are simpler decoders, such as the Soft Output Viterbi

Algorithm (SOVA) and the Max-Log MAP, but they are both sub-optimal

algorithms.

One of the objectives of this research is to investigate the effects of using

different generators for the RSCC's on the performance of the Turbo-codes. This



will be doneusing computersimulation. While severalanalyticalmethodshave

beenproposedfor choosingproperRSCC's in the Turbo-codesystemthey have

not all beentestedby computersimulation. Computersimulationis necessaryto

confirm resultsthat weregivenby analyticalmethods. Also it hasbeenseenthat

concatenatinga smaller memory convolutional encoderwith a memory four

convolutional code does not degradeperformance levels very much, while

decodingis lesscomplicated[5]. The performanceof theseschemeswill be

evaluated.In caseswherebandwidthis not a concernbut power is limited, lower

rateencodingschemescanbeof use. Simulationswill be run to determineif the

performanceof a lowerrate(1/3)Turbo-codeschemegeneratesgoodresults. The

resultsof therate 1/3codewill becomparedwith therate V2 Turbo-code scheme.

Also the effects of inaccurate measurement of noise variance on Turbo-code

performance will be investigated (the MAP decoder requires an estimate of noise

variance). This is done to see how stable the Turbo-decoding process is in the

case when noise variance is measured inaccurately.

This thesis will begin by describing the general encoding scheme. Then

detailed descriptions of the encoding components of Turbo-codes including

descriptions of the constuction of RSCC's and the interleavers, as well as

motivations for their use, will be given. Next will be the description of the

decoding process beginning with a description of the soft output decoders

(specifically the MAP algorithm) and then describing the Turbo-decoding process.

Finally the research findings will be presented.





Chapter 2

Overview of Encoding Components

2.1 General Overview

Most Turbo-codes are encoded by concatenating two RSCC's through an

interleaver. A block of message bits is encoded with a RSCC. That same block of

message bits is interleaved by a pseudo-random interleaver and encoded with

another RSCC (see Fig. 1.3). The systematic information is sent only once, not

separately with each RSCC.

The reasons that this channel coding scheme works so well are that it

combines three different areas that help to produce good codes [6]. The three

areas are:

combining several codes by concatenation

maximum use of channel information (i.e. soft decoding)

random like distribution of codewords

The purpose of this chapter is to show how Turbo-codes use the

RSCC's and the interleaver to mimic random codes in some ways. Soft decoding

algorithms will be discussed in chapter 3.

It was shown by Shannon that large random codes can decode near the

Shannon limit. This suggests that good codes should have a distance distribution

that mimics that of random coding rather than simply having a large minimum

6



distance. The weightdistributionhistogramof a fixed lengthrandomblock code

would be very close to a binomial distribution. It would have very few low

weightor high weightcodewords,andthe majority of the codewordswould have

a weightvery closeto the middleof the weight spectrum.Designingsuchcodes

with enough structureto decodewith a reasonableamount of complexity and

arbitrary parameters(i.e. length,rate) is not possibleyet. HoweverTurbo-codes

are able to generatea weight distribution that has been shown to have a

distributionwith a shapesimilar to thatof randomcodes.Thefollowing sections

will detail how eachcomponentof the Turbo-encoderallows Turbo-codesto

mimic randomcodes.

2.2 RecursiveSystematic Convolution Codes

This section will begin with an example of a non-systematic convolutional

code (NSCC). From there it is shown how to construct RSCC's and some of the

properties of RSCC's are given.

The structural sequences of channel coding have been classified into two

main categories, block and convolutional encoding. Block coding is performed

by accepting a given number of bits (k) and using algebraic rules to form a

number of parity bits (p). When the information is transmitted the parity bits are

tacked onto the information bits. The total rate of the code, k/n, is given as the

number of information bits (k) divided by the total number of bits sent (k+p).



Usually convolutional encoding is done by accepting bits serially, one bit

at a time through m tapped delay lines (a more general procedure is shown in [7]).

This means that the output bits will not only depend on the current input bit but

will also depend on at least the previous m input bits. An (n, k = l, m)

convolutional code can be implemented that accepts 1 input bit at a time, has n

output linear sequential circuits with input memory of order m. An example of a

(2, l, 2) nonsystematic encoder is shown in Figure 2.2.1. One way to think about

the output of the convolutional encoder is to consider the output to an impulse

when the encoder is in the zero state. The impulse

dk

h,._t"ZN.,_

_Ylk

Y2k

Figure 2.2.1 A Non-Systematic Convolutional Encoder

response of the system can be used to obtain a semi-infinite generator matrix due

to the linearity of the response. The generator matrix, G, of the circuit shown is

given in Figure 2.2.2. Notice that the output of the first row is the impulse

response of the system (1 1 l 0 l 1). The generator bits are grouped in pairs

of two. The first number is from Ylk and the second number is from YEk. One

way to generate the output for a given input sequence, {dk}, is to multiply the row



_L

vector by the generator matrix, remembering that addition is done modulo 2.

Thus, if d = [ 101 ] then the output is given by

d,G --

11 10 11 O0

[101]0 0 1 1 1 0 1 1
O0 O0 11 10

00

00

11

= [11 l0 00 l0 1 l]

G

11 10 11 00 00

00 ll 10 11 00

00 00 11 l0 ll

Figure 2.2.2 A Generator Matrix

That the output of a convolutional encoder is dependant not only on the

current input but also the previous m inputs, suggests that we can gain insights

into the properties of a convolutional encoder with a state diagram. A state

diagram for the encoding circuit in Figure 2.2.1 is shown in Figure 2.2.3. This

diagram can be important for determining some of the distance properties of

convolutional codes. These distance properties can give information about how

well a given code will perform. The state diagram shows the states (0, 1, 2, 3),

the inputs and the outputs they cause. For example if the encoder was in state 2

and a 1 was received, the next state would be state three and the output at that

time would be ( 0 1 ).
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0/00 1/10

Figure 2.2.3 The Input-Output State Diagram of the NSCC

Usually the most important distance measure for convolutional codes is the

minimum free distance. This is defined as [7]

dfree = min { d(v' ,v' '):u'*=u'" }

where v' and v" are the codewords corresponding to the input vectors u' and u"

respectively (dfr_e is not related to {dk} which was defined as the input sequence).

This means that dfree is the minimum distance between any two codewords in the

code. Another way of saying this is that the free distance of a code is the number

of bits that need to be changed in a given word for the output to be a different

codeword. This is important for determining the error correcting ability of a code.

The example given is for a NSCC. However RSCC's have been

discovered which perform better than the best NSCC's at any SNR for high code

rate (rate > 2/3) [8]. These encoders are constructed from NSCC's by using a

feedback loop and setting one of the outputs, Yk, equal to the input, dk. Since the

output of these codes is separated into the systematic portion of the output and the
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other portion, the other portion will be called the parity sequence and the parity

bit at time k will be denoted by pk. An example of a RSCC is shown in Figure

2.2.4 with the state diagram of this encoder given in Figure 2.2.5.

The generator given in Figure 2.2.4 is called a 5_7 RSCC. The 5 and 7

represent octal numbers that are converted to binary to represent the connections

in a generator circuit. The first number will be called the FB (feedback)

connection, while the second will be called the FF (feedforward) connection.

It was claimed that these codes perform better than the NSCC's at _ code rates.

A high code rate is accomplished by puncturing the outputs of the convolutional

encoder. This means systematically deleting some of the output bits. While

puncturing can be done in different ways, it is usually done by eliminating every

other bit out of the non-systematic portion (Pk in Figure 2.2.4) and will be done

this way for the remainder of this thesis. For this punctured code the rate would

then be 2/3 (1 information bit transmitted for every 1V2 bits transmitted). For

Turbo-codes the overall rate has generally been Y2by using two punctured

dk

•-\ j--

dk

Pk

Figure 2.2.4 A Recursive Systematic Convolutional Encoder
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1/1 0/1

0/0 1/0

2 0/1

Figure 2.2.5 Input-Output State Diagram of the RSCC

RSCC's and transmitting the systematic portion only once.

The reason that RSCC's are important is that they have been found to give

the greatest gain when used as the parallel concatenated codes [2] (it has been

shown that NSCC's give almost no gain when constructed as Turbo-codes). One

of the ways that they can be seen to be different from the NSCC's is that a finite

weight input sequence can be mapped into an infinite weight output sequence.

This is shown by the impulse response of the encoder of Figure 2.2.4 which is pk

= [ 1 1 1 0 1 1 0"1 1 0 1 1 0 . . . ]. Notice that after the first parity bit the

sequence repeats itself with a period of 3 bits. In general the impulse response of

a well designed memory m RSCC will repeat itself after 2 m - 1 bits. A

nonrecursive NSCC maps a finite weight input sequence into a finite weight

output sequence. Since one of the goals is to make the codewords have a random

distribution and since the output weight of a nonrecursive NSCC is somewhat
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correlated with its' input weight, using NSCC's would not be as good for

designingrandomlike codes.

[6] showedthatfor mostinput sequencestheoutputweightof RSCC'shas

the samedistribution as that of a random code sequence. While most input

sequenceswill haveanoutputweight thatapproximatesthat of randomsequences

thereare input sequencesthat causelow outputweights. For example,thereare

sequenceswith asfew astwo onesthatwill causetheencoderto go from thezero

stateto a nonzerostateand backand generatelow weight codewords. For the

encoderof Figure2.2.4a sequencethat woulddo this is dk= [1 0 0 10 0 0 0 ...].

Theparity output for this sequenceis pk= [1 1 1 10 0 0 0 ...]. This meansthat

anysequencethat is a shiftedversionof the one mentionedwill havean output

weight of 6. Thesecodewordsareexamplesof the codewordsthat causethe

codesto perform poorly. The object of encodingof Turbo-codesthrough an

interleaveris to "boost" the low outputweightcodewordsthatwould begenerated

by a single RSCC. In otherwords what the interleaveris designedto do is to

force most of those input words that produce low weight output codewords

through RSCC1 (i.e. few ones in Plk) to produce higher weight codewords

throughRSCC2(p2k)-

When decodingconvolutionalcodesit is desirableto force the encoder

into a knownfinal stateto protectthe final few informationbits. RSCC'scannot

bedriven to the all zerostateby addinga specific numberof zeros(this canbe

seenin the state diagram,Figure 2.2.5) as can be done with NSCC's. Some

simple, sub-optimalsolutionsto this are to fail to protect the final bits sent in a
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block by appendingno bits onto the end. This way neither the final stateof the

encoderor the final bits areknown. Anotherchoicethat canbemadeis to force

the encoderinto the all zero stateby a properchoice of m (where m is the

encodermemory) endbits. This allows the decoderto know that it is in the all

zerostatewhile not knowingthefinal m bits.

Choosingthe bestRSCC generatorsfor Turbo-codeshasbeen doneby

severalmethods.Onemethodthathasbeenusedto determinethe bestgenerators

is using the encoderwith the best distanceproperties [8]. Another method is

given in [9]. This methodinvolves using a primitive polynomial as the FB

connectionanddeterminingtheFF connectionsbasedon the resultingBER. That

paperalsolistsseveralgoodgenerators.

2.3 Interleavers

Theuseof agoodinterleaveris themostimportantfactorin achievingthe

best possibleperformanceof Turbo-codes[10]. The interleaver permutesthe

informationbits in sucha wayasto makethe outputof RSCC2(from Figure 1.3)

appearto be independentof the informationsequenceandthereforerandom-like,

but to have a structurethat permits decoding.

exactly makes up the best psuedo-random

While the mechanicsof what

interleavers is not completely

understood,and the mathematicsneededto analyzethem is somewhatdifficult,

therehave beensome investigationsthat give heuristic ideasasto why random

interleaverswork [10]. Also it hasbeenfound that goodinterleaversfor Turbo-

codesarenot hardto find [11]. This sectionwill discussa procedurefor creating
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a pseudo-randominterleaverandalsoshowwhy nonrandomblock interleaversdo

not work well inTurbo-codes[10].

In this discussionnonrandomblock interleaverswill refer to a structure

that readsbits in throughthe rowsandout by thecolumns. Pseudo-randomand

randominterleaverswill be referredto when discussingblock interleaversthat

readbits in throughtherowsbut arereadoutusingsomeothermethod.

Interleavershad been used prior to Turbo-codesin order to break up

patternsof errors in burstychannels.To do this a nonrandomblock interleaver

would oftenbeused. As mentioned,in this type of interleaverthe bits would be

readin by rowsandreadoutby columns. In this waya sequenceof theform

do,dl, d2,d3,d4,ds,d6,dT,ds,dg,dl0,dll, d12,d13,d14,d15

thatwasreadinto afour by four squarematrix wouldbe readout as

do,d4,ds,d12, dl, ds, d9, d13, d2, d6, dlo, d14, d3, dT, dll, dis

Although this sequence has been mixed up, it does not appear random to the

channel. It can be seen that if a sequence is correlated then this interleaving

procedure will change the correlation in a uniform way.

One procedure for creating a pseudo-random interleaver is given in [10].

The procedure is as follows: for an M*M memory (where M is a power of 2) the

bits to be interleaved are read into a square matrix. If i and j are the addresses of

the row and column for writing, respectively (with the first row and column being

labeled row 0 and column 0 respectively) and ir and jr are the row and column for

reading, respectively then the rule for reading is

ir = (M/2 + 1)(i +j) mod M
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E = (i + j) mod 4

jr = [P(E) * (j + 1)] -1 mod M

P(E) is a function of E that is relatively prime with M and is a function of the row

address (i +j) mod 4. P(E) is given as follows:

P(0) = 17; P(1) = 37; P(2) = 19; P(3) = 29;

P(4) = 41; P(5) = 23; P(6) = 13; P(7) = 7;

(The only difference between this interleaver algorithm and the one used in our

simulations is that the row address E is taken modulus 8 for a 256x256

interteaver). The sequence

do, di, d2, d3, d4, ds, d6, d7, ds, (:19,dl0, dll, d12, d13, d14, dis

will now be interleaved by this random interleaver. The output is given by

do, d13, ds, dT, d12, d9, d6, d3, dlo, ds, d2, dis, d4, dl, d14, dll

While the output from this interleaved pattern is not random per se, it does appear,

at first glance, to be more "random" than the previous interleaver. However it is

difficult to say how random an interleaver looks, especially for small blocks.

Right now the only way to test whether an interleaver is random enough in a

Turbo-code scheme is to run simulations with it. Deinterleaving is the inverse

function of interleaving.

The reason that random interleavers work in Turbo-coding schemes is

because they better "imitate" a random sequence to the channel. Since the goal of

Turbo-codes is to create somewhat random codewords (as given by their output

weight distribution) for a given input codeword, it can be seen that an output

sequence that is only distantly related to its' input would be desirable. This means
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that the output of RSCC2, p2k from Figure 1.3 should be nearly independent from

the sequence dk.

Some analysis of the distance properties of nonrandom block interleaved

sequences is given in Appendix 1. It is shown that nonrandom block interleavers

can produce output sequences with high weights for input sequences with weights

2 or 3. But for input sequences of weight 4 this is not necessarily the case. This

motivates the need for random interleavers.



Chapter 3

Soft Output Decoding

3.1 Overview of Soft Decoding

One of the factors that makes Turbo-codes work well was discussed in the

previous chapter (approximating random codes). In this chapter it is shown how

all the information from the channel is used. To do this soft output decoding is

needed. This allows information to be passed from one decoder to another

without loss of information. This requires a more complicated decoding system

than is usually used with convolutional codes. Several algorithms have been

proposed to generate the soft decisions. The Maximum-A-posteriori Probability

(MAP) algorithm [12] is the optimal algorithm and will be discussed extensively

in section 3.2. The Max-Log MAP [13], a simplification of the MAP algorithm,

and the Soft Output Viterbi Algorithm (SOVA) [14] will also be discussed briefly.

After an example of the MAP algorithm is given in section 3.3, the procedure for

decoding Turbo-codes will be discussed in sections 3.4-3.6.

3.2 MAP Algorithm

The MAP algorithm is the optimal algorithm for the minimization of

probability of bit error. The algorithm can also generate the probabilities of a bit

18
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being 1 or 0. This is importantbecauseit is usedto give a reliability valueby

using the log-likelihood value of a bit dk, A(dk) = log(Pr(dk = 1)/Pr(dk = 0)).

Pr(dk= i) is the probability that the decoded bit dk = i (i = 0, 1). This A(dk) is used

to determine a soft output value. The sign of A(dk) determines whether the bit is a

zero or one while the magnitude determines the reliability of the decoded bit. The

log function is the natural logarithm (base e). The notation used in this derivation

is as follows. Rkl k2 is the received sequence from states at time kl to time k2.

This is an encoded sequence that has been corrupted by noise. RI f is the entire

received sequence from time 1 to time f. Rk is the received information at time

unit k. Sk is the state of the encoder at time unit k. The value of the state at time

k, Sk, is denoted by m, while the value of the state at time k-l, Sk-l, is denoted by

m'. M is the total number of states. Hence m, m' = 0, 1..... M-1. It will be

assumed that the encoder starts in the zero state.

As stated, the MAP algorithm gives the decision for every bit (i.e. 0 or 1)

and a reliability value for the bit (higher reliability's being more reliable) given

that all bits have been received. Mathematically this can be done by finding the

probabilities of all state transitions. To do this we find

Pr{Sk-i = m'; Sk = m I RI f } (3.2.1)

Since this form is more difficult to work with, it is converted to an equivalent

form

Pr{Sk_l = m'; Sk = m ; R1 f }/Pr{ RI f } (3.2.2)
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Theequivalencebetween(3.2.1)and(3.2.2)is givenby Bayesrule.SincePr{R1f}

is aconstantfor agivenreceivedsequenceonly thenumeratorof (3.2.2)needsto

befound. Thefollowing notationis introducedto allow for easeof exposition.

_k(m,m')= Pr{Sk-i= m'; Sk = m; RI f} (3.2.3)

The probability that a bit is zero or one can be determined from (3.2.3) as:

Pr{ dk = i } = _ O"k(m', m) (3.2.4)
(m;m)eA_(i)

where Ak(i) is the set of state transitions that cause the output i at time k.

The essential idea of decoding a bit is to split the probability that a state

transition has occurred into three portions. The first part is developed from the

received information prior to the time of the state transition. The second portion

is formed from the received information after the state transition. The third

portion is based on the received information at the time of the state transition.

This can be expressed symbolically by introducing the following symbols.

O_k(m) = Pr{Sk = m, Rl k } (3.2.5)

13k(m) = Pr{ Rk+lf I Sk = m} (3.2.6)

_'i(Rk,m,m') = Pr{dk = i, Sk = m, Rk I Sk-i = m'} (3.2.7)

Assuming that any state transition is described by a Markov process the

value of _k(m,m') is given by

ak(m,m') = O_k.l(m) * _'i(Rk, m, m') * 13k(m). (3.2.8)

What (3.2.8) has shown is that the transition probability, Ok(m,m'), can be

broken up into those determined by the first k-1 transitions, the final (f - k)

transitions and the transition determined at time k. This is important because the
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transitionsdeterminedby Otk(m) and _k(m) Can be calculated recursively with the

following formulas [ 12]

1

Ctk(m) = _ _ _', (R,, m', m) * ak_ , (m') (3.2.9)
m' i=0

1

[3k(m) = '_'_ 7i(Rk+,,m',m)* flk+,(m') (3.2.10)
ra' i=0

Sometimes the 'yi(Rk, m', m) values are not probability values but are distribution

values (as will be seen in the example). The 0_k(m) and _k(m) will then need to be

normalized as follows.

I

ZZ Yi(Rk'm"m)*Otk-,(m)

_k(m) = ,. i=o (3.2.11 )
l

YYYr,(R 
m m' i=0

, m', m) * ak_ 1(m')

I

ZZ Y,(Rk+,'m"m)* flk., (m')

I]k(m)= "' '=° I (3.2.12)

ZZZyi(R,.,,m',m)*ot,(m')
m' ra 1=0

Since the probabilities at the first state are known (the encoder begins in the zero

state) the 0_k(m) can be calculated recursively from 1 to f. As soon as all the

0_k(m) are calculated, the 13k(m) can be calculated from the final bit back to the

first.

With this information ak(m,m') can be determined. Knowing Ok(m,m')

allows for the calculation of the log likelihood value, A(dk) which is
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EZ _"(Rk'm"m)* flk (m) otj,_,(m )

A(dk) = Log " " (3.2.13)

'_..j_'o(R,.m .m)* fl,(m) a,_,(m )
m fn'

The essence of the algorithm is the use of probabilities to decode bits as

opposed to the Viterbi algorithm, which uses metric values. The MAP algorithm,

given the probabilities that the encoder is in a state at time zero, and the received

channel values, calculates the probabilities of the encoder being in any state at any

time recursively. All of these 0_k(m) have to be stored for all values of k, and m

(for the decoder that achieved BER 10 .5 in [3] at EdNo .7 dB, k and m are

approximately 65000 and 16 respectively). A similar process is used to find the

13k(m) after the entire sequence has been received. With these parameters the

probabilities that the encoder was in any state can be derived and, along with the

received channel value, is used to find the log likelihood probability.

3.3 Example of the MAP Algorithm

A simple example of the use of the MAP algorithm will now be given.

The example will be done using a (5, 7) octal generator (Figure 2.2.4). For this

generator, parity bit outputs and state transitions are given by the state transition

diagram of Figure 2.2.5.

Ten random bits have been generated and the output of the encoder is

data bits {dk }: [ 0 0 1 0 0 0 1 0 0 0]

parity bits {Pk}: [ 00 1 1 1 000 1 1]
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Turbo-codesareusuallypuncturedto increasethe rateof the total code. When

this is donecertainbits aredeletedaccordingto a givenrule. Every otherparity

bit is not sentin this example. The information is sentoveranAWGN channel.

To makedecodingsimpler to understandthe receivedbits are transformedby a

lineartransformationbythemodulator,thereforetheinputsto thedecoderarexk=

((2*dk - 1) + noise) and Yk = ((2*pk --1) + noise). The bits which have been

deleted by puncturing are inserted as zeros. This is what happened to our received

data with noise variance of 1.6:

{xk}: [-1.04 -1.14 1.73 -1.48 -.02-1.49 -.53 -1.71 -1.94 -2.37]

{Yk}: [-.70 0 -.23 0 1.78 0 -.59 0 1.53 0 ]

Errors have occurred in the 7th column of the systematic bits and the third column

of the parity bits.

The decoding procedure can now be implemented. The first step is to

calculate otk(m) = Pr{Sk = m, R_ k} for all states and times. Knowing that the

encoder began in the zero state allows us to know that or0(0) - 1 while ot0(m) = 0

for m not equal to 0. From this and the received values the rest of the otk(m) can

be calculated. They are

k = 0 1 2 3 4 5 6 7 8 9 10

state 3 [0 0 .02 .03 .80 .12 .03 .33 .19 .63 .02]

state 2 [0 .02.07 .83 .11 .03 .77 .18 .36 .02 .32]

state 1 [0 0 .00 .11 .06 .79 .12 .36 .32 .33 .63]

state 0 [1 .98.91 .03 .03 .06 .08 .13 .14 .02 .02]
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Fromcolumnk -- 0 to column k = 1 the probability that the encoder went

to state 0 at the time after the first bit had arrived is the sum of the probabilities of

transitioning to state 0 from any previous state that could possibly come to state 0.

The only two states that can arrive at state 0 (from the state diagram, Figure 2.2.5)

are states zero and one. Therefore the probability of being in state 0 at time 1

(after the first systematic bit and parity bit arrive) is

[Pr{S0=0,R11 } * Pr{dl=0,Sl=0,Ri I S0=0}] + [Pr{So=l,Rl I } * Pr{dt=l,Sl=0,Rl I

S0=l }] = Oto(0) * _'o(Ri,0,0) + Oto(1) * yl(Ri,0,1).

Since the probability of being in state 1 at time zero (Oto(1)) is zero this

leaves only the first portion (Oto(0) * _'0(Ri,0,0)) to be considered. Using the fact

that the information was sent over a Gaussian channel _'o(Rt,0,0) is calculated by

the following formula:

_(i(Rk ,m,m') = constant * exp[-(Xk - bS(i,m',m))2/No] * exp[-(yk - bP(i,m',m))2/No]

(3.3.1) for each pair of states which allow a transition.. I chose to leave

the constant as one and normalize the o_ and 13values after o_ and 13are calculated

at any state (this is done by equation 3.2.11 automatically), bS(i,m',m) is the

systematic bit output at the modulator when there is a transition from state m' to

state m. Likewise bP(i,m',m) is the parity bit output from the modulator when

there is a transition from state m' to state m. As an example, if it is assumed that

the encoder has gone from state 3 to state 1 at time k, then dk would be 0 and pk

would be 1. Since the modulator transforms these outputs by the linear

transformation given above bS(i = 0,m' = 3, m = 1) = - 1 while bP(i = 0,m' = 3,m =
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1) = 1. Nois the noisevariance(in this casethe noisevarianceis 1.6). xi is the

systematicbit receivedat time k = 1 which is -1.04. yl is the parity bit that has

beenreceivedat time 1. This is -.70. This meansthe transition probability

('to(Ri,0,0))is

exp[-(-1.04- (-1))2/No]* exp[-(-.7 - (-1)) 2 / No] = .99 * .95 = .98

Similarly the transition from state 0 to state 2 ()q(Ri,2, 0)) is

exp[-(-1.04 - (+1)) 2/No]* exp[-(-.7 - (+1)) 2 / No] = .09 * .19 =.02

The rest of the Ctk(m) can be calculated in the same way.

I_k(m) are calculated in a similar way. However after the final bit has

arrived the final state of the encoder is not known. For this reason 131o(m) can

either be initialized as Oqo(m) or given equal weighting as (l/M). I have chosen to

use the former method. 13k(m) is then

k = 0 1 2 3 4 5 6 7 8 9 10

state 3 [.23 0.17 .10 .07 .26 .44 .23 .01 .34 .63 .02]

state 2 [.16 .10 .58 .26 .44 .24 .26 .33 .66 .03 .32]

state 1 [.20 .51 .18 .43 .06 .26 .44 .64 .00 .33 .63]

state 0 [.41 .22 .19 .24 .23 .06 .06 .02 .00 .19 .02]

Using _9(0) for an example of how to calculate the _k(m) will now be

done. [39(0) is the probability that the sequence after time 9 (i.e. the last bit )

would arrive given that the state is known to be state zero at that time. For this

case we know that the sequence could only go to state 0 or to state 2. _9(0) is

(_Io(0) * )'o(Rio,0,0)) + ([31o(2) * )q(RIo,2,0)).
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To calculateT0(Rlo,0,0) and Tl(Rlo,2,0) we use the same method as before.

T0(R10,0,0) = exp[-(-2.37 - (-1))2/N0 ] * exp[-(0 - (-1))2/N0] = .33 * .55

Ti(Rl0,0,2) = exp[-(-2.37 - 1)2/No ] * exp[-(0 - 1):/N0] = .001 * .55

So that 139(0) is .02 * .18+ .32 * .005. At this point you may notice that the

sum of these does not come to .19. This is because the T have not been

normalized. This is why after all 139have been calculated in the way that was just

described the values are normalized (this is from 3.2.12). Continuing this way

through for each of the received bits generates all the values of 13k(m) for all k and

m although 13kcan be discarded after it has been used for generating the output

value at time k if lack of memory is a problem.

This information (o_k and I_k) has been generated to obtain the probability

values of each transition so that the probabilities that each bit was either a 1 or 0

can be calculated using (3.2.4). Because we only need the ratio of the

probabilities to generate the log likelihood value we will not need to find the

probability per se. As an example I will find logarithm of the ratio of the

probability the first bit was a one to the probability the first bit was a zero.

The only transitions that can occur with the arrival of the first bit are the

transition from state 0 to state 0 (which generates a 0) and the transition from state

0 to state 2 (which generates a 1). Therefore the probability that this output is a

one is given by o1(0,2) = o_0(0) * Tl(Rl,0,2) * 131(2).

output is zero is O0(0,0) = Oco(0) * T0(RI,0,0) * 13t(0).

values and then the logarithm gives a value of -4.67.

The probability that the

Taking the ratio of these

Since the sign of the bit is
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negativeit hasbeendecodedcorrectly. The reliability value of 4.67 can give

information aboutthe actualprobability of a bit being 1 or 0 if that is desired.

Hereis thecompletedecodedsequence.

[-4.67 -2.2 5.13 -6.15 -3.77 -6.15 1.66 -6.0 -7.1 -7.8]

As canseenby comparingthis with theoriginal sequencethe sequencehasbeen

decodedcorrectly and the certaintyof eachbit canbe measuredrelative to the

others.

The disadvantagesof this systemarenow apparent.Thereis a very large

amountof memoryneededfor decoding(storageof o_). Also the complexity of

the decoderis apparentfrom the equationsneededto calculatethe parameters

(largenumbersof multipliesandadds).

The Soft OutputViterbi Algorithm [14] and the Log-MAP algorithm [13]

will now be discussed breifly.

The SOVA is generally similar to the standard Viterbi Algorithm in that it

compares metric values at each node of the trellis to decide which path is the

maximum likelihood path (hence the minimum metric). The SOVA at each node

will also compare the path with the minimum valued metric with the path with the

second best metric, and use that information to update a reliability value of all bits

which are not the same in the two paths. This requires only comparisons of

metrics and table lookups, which are less time consuming than the MAP

algorithm. Also only one pass through the information is required as opposed to

the MAP algorithm, which requires a forward and a backward pass.
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The Max-Log MAP algorithm is a simplification of the MAP algorithm

thatresultsfrom takingthe log of theprobabilitydistributionof thetransitions(7)

andreplacingthemby approximations.This algorithm is a betterapproximation

thantheSOVAbut not asgoodastheMAP algorithm.

3.4 Decoding of Turbo-codes

The general scheme for the decoding is shown in Figure 3.4.1. As soon as

the sequence is received the parity bits are demultiplexed. A soft output decoder

is used with the inputs being the systematic information and the output of the first

RSCC (dk and plk after modulation and having noise added, producing Xk and Ylk

respectively). The output of this decoder is an estimate of the information

sequence and will be called A1. This estimate is then interleaved according to the

pseudorandom interleaver that was used at the encoding stage. This allows the

new estimate A1 to be used along with the parity bits from the second recursive

convolutional code in a second soft output decoder. This produces a new estimate

of the (interleaved) information bits. However, because the first decoder did not

use all the information available (specifically it did not use the second set of parity

bits, Y2k) the performance can be improved by adding a feedback path from the

output of the second soft output decoder to the first decoder as shown in Figure

3.4.2.
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Xk

Ylk

DEc1I I
"1 !

INTERLEAVE

y2k

DEC2
DEINTERLEAVE

Figure 3.4.1 The General (Suboptimal) Turbo-decoding Structure

One important consideration when feeding information from the second

decoder back to the first is that the information sent back to the DEC1 must be

information that is independent of the information generated by DEC 1 in the first

place. It should be information that was generated by Y2k- If the information sent

back to DEC1 was already generated by DEC1 there would be positive feedback

and the decoding could become unstable. There are two methods for feeding

back information. The first method is from [4] and the second from [5]. The

first method uses slightly different decoding stuctures for DEC1 and DEC2. The

second method hasthe same decoding structure for both decoding blocks.

3.5 Method 1 for the Decoding of Turbo-codes

The first method is achieved by considering the output of the first MAP

decoder (DEC 1) which is
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,'_,'_ 7"1(R, ,m',m) * flk (m) *a,_l (m')

Al(dk) = log " "

'_ ___.,Yo (R, ,m',m) * fl, (m) * _k-, (m')

(3.5.1)

DEINTERLEAVE

I J
DEC1 ___ INTERLEAVE

J
DEC2

Figure 3.4.2 One Optimal Decoding Scheme

In the first decoder (in Fig 3.4.2), the sequence Rk consists of the channel values

Xk and Ylk. Because the encoder is systematic the transition probability

p(xkldk=i,Sk=m,Sk_l= m') in Ti(Rk, m', m) (from 3.3.1) is independent of the state

value of the encoder. Being independent of states means that the summations

over m and m' (the current and previous states) will have no effect on it. What

this means is that this can be factored out in the numerator and denominator of

(3.5.1). Now
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Xf" _._ y, (y,, ,m'.m) * fl, (m) * Otk_t (m')

A 1(dk) = log _ "

_F.,_.,)'o(y,,,m',m)* fl,(m)*a,-,(m')
m ra

t-log P(Xk I d, = 1) (3.5.2)
p(x_ I d k = O)

This can be expressed more concisely as

Al(dk) = Wik + (2/0 "2) * Xk (3.5.3)

where Wik is the logarithm of the quotient of the summations in (3.5.2). Notice

that the "r term in (3.5.2) depends on Ylk, not the systematic term Xk. So W_k =

{Al(dk) I Xk = 0}. The tx and 13terms are still built with systematic terms as well

as the parity information. The Xk is multiplied by (2/_ 2) in (3.5.2) because Xk is

Gaussian with mean +/- 1 and variance o"2. This shows that W_k is the

information produced using the structure of RSCCI (it is the information output

from DEC1 that depends on memory).

Now A l(dk) will act as the systematic information in the input to second

decoder. The output of the second decoder will be

A2(dk) = W2k "t"f(Al(dk)) (3.5.4)

with W2k defined similarly to Wlk in (3.5.3). f(*) is some function of Al(dk).

W2k is a function of the sequence YEk and uses a priori information from the

sequence {A 1(dk) }. Because of interleaving between decoders W2k is only weakly

correlated with Xk and Ylk (the hope is that it is independent of {Al(dk)}). This

means that a new decoding process can take place with Xk, Ylk and using WEk as a
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priori informationin DEC1afterthefirst decodingiterationhasoccurred. [4] sets

Zk = W2k and assumes that it can be approximated by a Gaussian random variable

with a variance of _z 2 (the variance of t_z2 must be estimated at every iteration).

After the first iteration the output of DEC1 will be determined by Xk, Ylk, and Zk

and will be equal to

Al(dk) = Wlk -t- (2/O "2) * Xk + (2/Oz 2) * Zk

(3.5.5)

In (3.5.5) the Wit term has used Xk, Ylk, and Zk tO build a and [3 (as the a priori

information). Now since Zk has been built by DEC2 it cannot be reused as input

information for DEC2. This means that (2/_z 2) * Zk must be subtracted off after

decoding has been done. The decoder structure is shown in Figure 3.4.2.

3.6 Method 2 for the Decoding of Turbo-codes

The first method of decoding Turbo-codes involved passing the

information to the second decoder that was obtained from both the systematic

sequence and the first parity sequence. The second method involves sending the

systematic sequence directly (after interleaving) and also using the a priori

information directly. The output of either of the MAP decoders in this method is

split into three parts in a manner similar to (3.5.5). The result is
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( m', m) * (m) * ak_, (m')
A(dk) = log " _

EE_'o(y k ,m',m) * flk (m) * Otk_, (m')
rtl Vii"

_-log P(Xk Id k = 1) 4-L(dk)
p(x k I d_ = O)

(3.6.1)

L(dk) is set to zero for the first iteration of the first decoder. After that L(dk) is the

a priori information generated by the previous decoder (i.e. the log of the

summation of products). This means L(dk) is generated by the parity information

from the previous decoder. The systematic information is interleaved (or

deinterleaved) and passed to the next decoder separately. The use of L(dk) in

decoding comes in considering the value of

"yi(Xk, Ylk, L(dk), m', m) = Pr(xkldk = i,Sk = m,Sk-i = m')* Pr(yk I dk = i,Sk=m,Sk-I =

m')* Pr(dk = i ISk= m,Sk.l = m')*Pr{Sk = ml Sk-I = m',L(dk)} (3.6.2)

Pr(dk = i ISk = m,Sk-i = m') is either zero or one depending on whether there is an

output i associated with a state transition from m' to m. With Pr{Sk = ml Sk._ =

m',L(dk)} the use is made of the information from the previous decoder. L(dk)

was generated as the log of the summation products from the previous decoder.

This means that L(dk) is equal to log(Pr(dk=l)/Pr(dk=0)) using information

generated by the previous decoder. By exponentiating L(dk) and using the fact

that Pr(dk=l) + Pr(dk=0) = 1 its' value can be given as follows

e L(dk )

Pr{Sk = ml Sk-I = m',L(dk)} = (3.6.3)
1+ e L(_,

if the state transition from m' to m determines a 1; and
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e L(d_

Pr{Sk = ml Sk-i = m',L(dk)} = 1 eL_,_ (3.6.4)1+

if the state transition from m' to m determines a 0. In plain language what this

gives is the probability that a bit is one or zero depending on the information

generated from the previous decoder. The decoding scheme used in this case is

shown in Figure 3.6.1. The advantage of this method is that no variance estimate

is required. For this reason I used this decoding method in my decoder.

With either method the number of iterations can be determined by

knowing the number of iteration needed to achieve the BER required.

] DEINTERLEAVE 1_

DEC 1

INTERLEAVE

DEC2

DEINTERLEAVE

Figure 3.6.1 The Second Optimal Decoding Method





Chapter 4

Results

In Turbo-coding there are several components (i.e. random interleavers,

RSCC's, and decoders), each with different parameters. Even separately these

components can be difficult to analyze. Several papers have helped in the

separate analysis of both the interleavers and the RSCC's [8],[1 1]. One of the

important results claimed in [1 1] is that the interleaver size is the most important

factor in determining the performance of Turbo-codes and that BER performance

is inversely proportional to the size of the interleaver for large enough, random

enough interleavers. This is important because it allows for testing of other

components somewhat independently of the interleaver. For this reason only one

interleaver was tested. The implementation of the interleaver is given in section

4.1.

The MAP decoding algorithm is used in the simulation. The reason for

this is that this will give the best possible performance. Also simpler, more

memory efficient versions of the MAP algorithm are becoming available [15].

The second decoding method, described in 3.6, was used because the variance at

the output of the second decoder did not need to be estimated.

35
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In the simulationstherewere no zero bits tackedon to the end of each

block and the final stateof the encoderwas unknown. This did not seemto

degradeperformance. Most of the decodingwas done for a maximum of 18

iterations. This is becauseit was done this way in [4] and is considereda

benchmarkfor my research.

The first requirementwas to test the memory4 generatorsto determine

whichproducethebestBER curves. Memory4 codesaregenerallyusedbecause

they can generatevery good performance. Higher memory generatorsdo not

generallyadd much performancegain and the decodingprocessis much more

complex(rememberthat decodingcomplexityandmemoryrequirementsincrease

by more than a factor of 2 for everymemoryelementadded). Section4.2 will

give the simulationresultsof memory4 RSCC's concatenatedin a Turbo-code

scheme.

The next considerationis the reduction of decodercomplexity while

maintaininggood performancelevels by reducingthe memory for RSCC1and

using the standardmemory four RSCC2. Becausethe decodingcomplexity of

each(MAP) decodergrows exponentiallywith encodermemory the complexity

of a Turbo-codewith memory4 RSCC2andmemory3 RSCC1is approximately

75% of the complexity (ignoring the interleavinganddeinterleavingoperations,

which in anycasearejust readingandwriting operations).For memory4 RSCC2

andmemory2 RSCC1thecomplexity is about5/8 of thestandard.This analysis

assumesthe same number of iterations for both decoding structures being

compared. If the performanceis not degradedsignificantly then the savingsin
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decodingcomplexity can be a significant factor. Section 4.3 will give the

simulationresultsof theconcatenationof 2 differentRSCC's,one with a smaller

memory.

Thenext ideathat wasconsideredwasobservingtheeffectof reducingthe

rateof theTurbo-codesby sendingall parity bits andrejectingpuncturing. Using

lowerratecodescanresultin powersavingsattheexpenseof extrabandwidth. In

caseswhen power is limited it is importantto know how well Turbo-codescan

performwithout puncturing. Section4.4 will give the simulationresultsof arate

1/3Turbo-code.

Section4.5 will give the simulationresultsof a Turbo-codewherenoise

variancewasmeasuredinaccurately. This is donebecausethe MAP algorithm

requiresanestimateof thenoisevariance. If Turbo-codeswereto decodepoorly

becauseof a small error in the noise varianceestimatethen they would be of

almost no practical use. These simulation results will show how much

performanceis degradedby somepoorestimates.

Of coursethis researchhasnot closedthebook onTurbo-codes. Section

4.6 will giveideasfor furtherresearch.

4.1 Interleaver Implementation

The interleaver algorithm used in this simulation is implemented as

follows [10]: for an M*M memory (where M is 256, hencethere are 65536

bits/block) the bits to be interleavedare readinto a squarematrix. If i andj are
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the addresses of the line and column for writing, respectively (with the first line

and column being labeled line 0 and column 0 respectively) and ir and jr are the

line and column for reading respectively, then the rule for reading is

ir = (M/2 + 1)(i +j) modM

E = (i +j) mod 8

jr = [P(E) * (j + 1)] -1 mod M

where P(E) is a function of E that is relatively prime with M and is a function of

the line address (i + j) mod 8

P(E) is given as follows:

P(0) = 17; P(1) = 37; P(2) = 19; P(3) = 29;

P(4) = 41; P(5) = 23; P(6) = 13; P(7) = 7;

4.2 Memory 4 Generators

5 different generators have been considered. The first is a 27_31 encoder

which is shown in Figure 4.2.1 with results shown in Figure 4.2.2. The 27_31

circuit had the best BER curves after 18 iterations. For this reason iterations were

continued beyond 18 to determine how well it would perform. This code decoded

below BER 10.5 at .65 dB after 28 iterations. Although the number of iterations is

very large, it may be worth it if power is a constraint in a given application. The

BER of the 27_31 code after 18 iterations was used as the reference against other

Turbo-encoders tested. The dashed line in the BER curves is the result of the

27_31 after 18 iterations.



39

Next a 23_35encoderwastested[8]. This encoderis shownin Figure4.2.3with

resultsshownin Figure4.2.4. This RSCChasthebestdistanceproperties. It can

be seenthat BER curvesarenot as goodas the 27_31codeafter 18 iterations.

HowevertheBER after 1 and 2 iterations is better than the 27_31 code. What this

seems to show is that this encoder may perform better asymtotically at higher

EdNo.

The next two generators were given in [9]. This required the FB portion

of the encoding circuit to be a primitive polynomial while the FF portion of the

circuit should be chosen to minimize BER using certain criterion. Two generator

polynomials given in that paper were 31_27 and 31_33 generators. Of these

two, only results of the 31_27 encoder, which is shown in Figure 4.2.5 with

results shown in Figure 4.2.6, are given. This is because the generators were

obtained by the same method and the results are similar. The BER curves of these

circuits are very similar to the BER curves obtained by the 23_35 circuit. Both

are approximately .1 dB away from the 27_31 circuit after 18 iterations at BER

10.5 and both of them have steeper dropoffs at higher E_/No.

Finally the originalcircuit used in [4] which was a 37_21 circuit, shown in Figure

4.2.7, was tested. Results are shown in Figure 4.2.8. This circuit performed

better than any circuit at low EtZNo after many iterations with the exception of the

27_31 encoder.

The 37_21 RSCC and the 27_31 RSCC's were chosen arbitrarily while the

other RSCC's were chosen based on analytical techniques. The 23_35 RSCC was

determined based on distance properties and not on how it would perform in a
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Turbo-code scheme. It was not necessarily expected to perform well as a Turbo-

code. However the 31_33 RSCC and the 3127 RSCC were designed to be

optimal in a Turbo-code scheme. What this analysis has shown is that the

RSCC's that are selected based on the analytical techniques may not perform the

best at very low EdNo. From the results of the simulations completed here it

appears that the best memory 4 encoder obtained so far is the 27_31 RSCC but

this does not mean that better RSCC's will not be found. Better analytical

methods need to be found for generating good RSCC's to remove any doubt as to

which RSCC will perform best.
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4.3 Lowering Decoder Complexity

The next consideration is the reduction of decoder complexity while

maintaining good performance levels by reducing the memory for RSCC1 and

using the standard memory four RSCC2. It was shown in [11] that RSCCI

should be the encoder with reduced memory.

The smaller memory generators that were used were obtained from [8].

The 7_5 circuit is shown in Figure 4.3.1. The results of the 7_5 RSCC1

concatenated with the 27_31 RSCC2 are shown in Figure 4.3.2. A closeup of

these results is shown in Figure 4.3.3 to highlight the differences between the

curves. The 15_17 circuit is shown in Figure 4.3.4. The results of the 15_17

RSCC1 concatenated with the 27_31 RSCC2 are shown in Figure 4.3.5. A

closeup of these results is shown in Figure 4.3.6.

As can be seen in the Figures the loss in coding gain is not very much.

For decoding at 10 .5 the loss in power is only .12 dB and .10 dB for memory 2

and 3 RSCC1 respectively concatenated with the memory 4 RSCC2. At 10.4 the

difference was even less pronounced, with losses of only .07 and .04 dB. In many

cases it seems this would be a fair tradeoff given the reduced decoding

complexity. If decoding complexity is a problem the smaller memory should be

used since the difference in power savings is not significant between the two.
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4.4 Lower Rate Turbo-codes

It was suggested in [ 11 ] that unpunctured Turbo-codes might not perform

as well as punctured Turbo-codes. To determine the validity of these claims

simulations were done on an overall rate 1/3 turbo code with results shown in

Figure 4.4. Since the Shannon limit at rate 1/3 is -.55 dB the results are very good.

They decode at only .65 dB away from the Shannon limit in only 14 iterations.

This is the same distance away from the Shannon limit as the punctured codes

after 28 iterations. The tradeoff is increased bandwidth requirements which may

not be a problem in some applications.
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Figure 4.4 Performance of 27_31 RSCC's Without Puncturing.
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4.5 Inaccurate Noise Variance Measurement

Finally the effect of inaccurate noise variance measurement on the decoder

was observed. The effect of underestimating the variance is given in Figure 4.5.1

with the results of an overestimate of the variance given in Figure 4.5.2. From

these Figures it can be seen that an error of 20% either way in the estimate of the

variance will result in approximately a .1 dB loss. Of course the worse the

estimate is, the worse the decoding performance will be. This seems to be a

reasonable amount of loss. This shows that the MAP algorithm is not terribly

unstable for inaccurate noise variance measurements.

CC
W

o
I0

16'

162

163

i#

16s

0.55 0.95

60% Variance

, ,_ccuratq Varlaqce , °, ,e

0.6 0.65 0.7 0.75 0.8 0.85 0.9
Eb/No

Figure 4.5.1 Underestimating Variance
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4.6 Further Research

Some of the questions about Turbo-codes that are still unanswered at this

time will now be presented, some of which were posed in [ 11 ].

It has been found that the MAP algorithm used with Turbo-codes

approaches analytical bounds given in [11] after many iterations. One question is

whether suboptimal decoding algorithms, such as the log-MAP algorithm and the

Soft Output Viterbi Algorithm (SOVA), will also converge to same levels. Also

the complexity of these algorithms versus the optimal MAP algorithm needs to be

analysed. Perhaps two of these algorithms could be used for decoding, first
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decoderbeing a lesscomplicatedone for the first few iterationsand the MAP

algorithmasa"cleanup" typeof decoderthateliminatestheresidualerror.

While it hasbeenshownthat it is not hard to obtain a good large size

interleaverit remainsto be seenwhetherananalyticaldevicecan be found that

will give anoptimal interleaverfor a giveninterleaversize. Also the analysisof

theoptimal interleaverfor asmall interleaverstill hasnot beencompletelysolved.

Multi-dimensional Turbo-codeshave also been investigated. Multi-

dimensionalTurbo-codesarecodesthat areencodedby sendingthe systematic

information and sending the information through multiple interleaversto be

encodedthroughmultipleRSCC's

The combined modulation and coding technique, Trellis Coded

Modulation (TCM) providesgoodcoding gain aswell as bandwidthefficiency.

Combiningtheideasof Turbo-codesandTCM wasbegunin [16].
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Appendix A

Properties of Nonrandom Block Interleavers

Some analysis of the distance properties of nonrandom block interleaved

sequences will now be given. This will show that some low weight input

sequences (i.e. input weight 2 or 3) will produce output words that have a high

output weight and who's output weight increases for larger interleavers. This is a

good result because the goal of encoding Turbo-codes through an interleaver is to

boost the output weight for sequences that would produce a low weight codeword

through a single RSCC. However the analysis will also show that nonrandom

block interleavers produce too many low output weight codewords that are not

affected by interleaver size for input weight 4. This will show that nonrandom

block interleavers do not adequately "randomize" the output from RSCC2. This

analysis will follow Berrou closely [10]

Consider the Turbo-encoder shown in Figure 1.3. To simplify analysis and

to give some concrete numbers to observe, the RSCC generator will be a 23_35

(octal) punctured encode which is shown in Figure 4.2.3. Those sequences that

produce finite weight outputs of both RSCC's and have a finite weight input

sequence are called global finite codewords or FC patterns. Some FC patterns

with low output weight will be shown.

Consider a large, M*M nonrandom block interleaving matrix (assuming M

is a power of 2). Information bits are read in through the rows and read out

55
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through the columns. By assuming the matrix is filled with only a small number

of ones and the rest of it is filled with zeros the analysis is greatly simplified.

Because of the recursive nature of the codes at least 2 information bits being one

is necessary for a FC to be produced. The RSCC's repeat every 2 m - 1 bits for an

m memory code. With d representing a systematic sequence with weight w and

p l and p2 representing the parity information generated by RSCC1 and RSCC2

respectively, distance from the zero codeword of the FC is given as

distance(w) = w + distancepl(w) + distancep2(w) (A. 1)

w is the weight given for the systematic portion of the output and distancept(w) is

the weight given for the punctured output of RSCC1 with the input being dk.

distancer,2(w) is the weight of the punctured output of RSCC2 with the input being

the interleaved version of dk. Puncturing is done by transmitting plk only at odd

times k (k = 1, 3, 5 .... ) and P2k at even times k.

For an input weight of 2, distance(2) can be given if distancepj(w) is

assumed to be generated by the minimum distance between bits that will produce

a FC (for a memory 4 encoder the distance between 2 one's that will cause a finite

output weight is 15 because a RSCC repeats itself after 2 m -1 bits meaning that

distancepl(w) is 4). Now

distance(2) = 2 + 4 + INT((15*M + 1)/4) (A.2)

The final term is generated by assuming that the (15*M +1)/2 symbols output

from RSCC2 are 1, half of the time. For the size of interleaver used in the

simulation (M = 256), distance(2)would be about 966. This shows that M is the

main factor for the output weight for large interleavers with weight 2 input
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sequences. In fact it has been shown [11] that increasing the size of the

interleaver in a Turbo-code scheme by a factor of N will decrease the BER by a

factor of 1/N. This means that if an interleaver size of 100 bits in a Turbo-code

scheme generates BER 10.3 at a given E_lo then an interleaver size of 1000

should generate BER of 10 .4.

For an input dk with weight 3 some of the patterns that can cause a FC can

be seen by tracing the output on the state diagram for three inputs that are one's,

but they are not easy to catalogue. It might be assumed once again that the

distances are similar to the case of 2 l's because the finite codeword output from

RSCC2 will still be several times M long. This means that weight 3 input

sequences will produce output weights that will increase with larger interleavers

and therefore give better performance.

For higher input weight sequences the analysis comes clown to viewing the input

as the separate combination of several lower weight codewords. For example an

input of weight 4 can be viewed as an input of 2 weight 2 codewords. The

minimum output weight for input weight 4 is when global FC is interleaved with

the input at the comers of a square with l's on the comers (Fig. A.1). The

minimum output weight for this is given by

d(4) = 4 + 2* min{ distancepl(W)} + 2*min{ distancep2(W)}

= 4 + 8 + 8 = 20 (A.3)

Also notice that any rectangular input pattern with weight 4, and with distances

between ones that are a multiple of 15 will cause a FC. What this example shows

is that with a block interleaver the output weight of both RSCC codes may be
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small. The desire is to map most codewords into medium weight codewords. It is

hoped that interleavers

fourteen

zeros

r__.__

1_1

Figure A. 1 An Input Pattern That Will Cause a Global FC

that are more random could stand a better chance of mapping those low weight

output sequences from RSCC1 into higher weight output sequences of RSCC2.

What is desired when data is interleaved is the maximum scattering of data and

also the maximum amount of disorder in the interleaved data.

Some of the difficulties in determining good random interleavers are

these: How can it be determined that an interleaver that does a good job breaking

up, say w = 4 inputs like the one in Figure 2.3.2 will not create more code words

with low weights for w = 2? Also the complexity must be limited due to the

many times data must be interleaved and deinterleaved in a decoding operation.

For higher weight inputs analysis becomes more difficult due to the fact

that the inputs can be viewed as combinations of other patterns of codewords.

However it seems that as long as the interleaver used does not have too much

structure ( i.e. a block interleaver) it should work well enough in a Turbo-code

scheme.
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Flowcharts For Simulation Program
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Appendix C

Program Listing

/* Simulation Program */

/* This runs an entire simulation of a turbo coding scheme. It calls

functionsdecout(out,trans,numstates,sysreal,sysfb,parity, N). N is noise.

numbits is the number of'bits decoded per block,which should be defined in

here. In mmt.h we have all the memory allocation tricks and gasdev() which

is a gaussian random number generator. The interleavers

which are of the form interfloat( *data, M) where M is the root of the

sizeof the interleaver (square root of numbits) */

/* To run change filename to dump output to, generator polynomial, EbNo

memory and number of state */

#include <stdio.h>

#include <math.h>

#include "mmt.h"

#include "header.h"

void main(void)

(

FILE *inl;

int **gl,**g2,i,j,k,prevstate,numbits=16384,numblocks =150;

int *state,in=0,meml=4,mem2=4,numstatesl=16,numstates2=16;

/*numstates has to be size 2^mem */

int **outl,**transl,**out2,**trans2; /* These give output and

transition information about the encoders */

int *d,numerr=0,stat,M=128,numits=18,file_num__errs[28]={0) /*must be

size numits + i0 */,**intoint,**outofint;

float N,std,*dcorrupt,*pl,*p2,*intrinsic,EbNo=.8,rate=.5,max =2;

/*rate is .5 because of puncturing. EbNo is in dB */

float *sysfb,**alfal, **betal;

float **intofloat,**outoffloat;

double x;

long idum[l] = {0};

/* i,j, ir,jr are indexes that stand for inputs to the interleaving

matrix and reading from interleaving matrix. */

inl = fopen("3127.txt","a+t"); /* this is the name of the file it

will be stored in */

/* gl and g2 are generator matrices that help create outl,out2,

transl,trans2 with prevstate, *state */

/* meml and mem2 are the memory for gl,g2, numstatesl = 2^meml

numstates2 = 2^mem2 */
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/* d is the information bits which create dcorrupt,pl (parity bits

from the first generator), p2 (likewise for the interleaved info} ....

/* EbNo is given for rate 1/2. numbits is M*M */

/* The other variables are used in generating the information */

/* time to allocate memory for **all** the variables, from mmt.h */

outl = int_matrix_2d(numstatesl,2);

transl = int_matrix_2d(numstatesl,2);

out2 = int_matrix_2d(numstates2,2);

trans2 = int_matrix_2d(numstates2,2);

state = (int *) calloc(l,sizeof(int));

d = (int *) calloc(numbits,sizeof(int));

dcorrupt = (float *) calloc(numbits,sizeof(float));

pl = (float *) calloc(numbits,sizeof(float));

p2 = (float *) calloc(numbits,sizeof(float)) ;

intrinsic = (float *) calloc(numbits,sizeof(float));

sysfb = (float *) calloc(numbits,sizeof(float));

alfal = float matrix_2d(numstates2,numbits+l);

betal = float_matrix_2d(numstates2,numbits+l);

intofloat = float_matrix_2d(M,M);

outoffloat = float_matrix_2d(M,M);

intoint = int_matrix_2d(M,M);

outofint = int_matrix 2d(M,M); /* allocating memory */

/* converts EbNo to a noise variance */

N = (2)/((float) ((2.0 * rate * (float) (pow(10,EbNo/10)))));

std = sqrt(N/2);

/* printf("EbNo = %f variance = %f \n",EbNo,N/2) ; */

gl=int_matrix_2d(2,meml+l);

gl[0] [0]=I; gl[0] [i]=i; gl[0] [2]=0;

gl[l] [0]=i; gl[l] [i]=0; gl[l] [2]=i;

g2=int_matrix_2d(2,mem2+l);

g2[0] [0]=I; g2[0] [i]=I; g2[0] [2]=0;

g2[l] [0]=i; g2[l] [i]=0; g2[l] [2]=i;

/* allocating mem for gl */

gl[0] [3]=0; gl[0] [4]=i;

gl[l] [3]=i; gl[l] [4]=i;

/* allocating mem for g2 */

g2[0] [3]=0; g2[0] [4]=I ;

g2[l] [3]=I; g2[l] [4]=I ;

/* create output and transition matrices */

for(in =0;in<=l;in÷+)(

for(prevstate =0;prevstate<=numstatesl-l;prevstate++

state[0] = prevstate;

outl[prevstate] [in] = encode(gl,in,state,meml

transl[prevstate] [in]= state[0];

)
)

for(in =0;in<=l;in++){

for(prevstate =0;prevstate<numstates2 ;prevstate++) (

*state = prevstate;

out2[prevstate] [in] = encode(g2,in,state,mem2

trans2[prevstate] [in]= *state;

)
)

********************** START SIMULATION

for(k=0;k<numblocks;k++){

for(i=0;i<numbits;i++)( /* making info bits */

d[i] = (int)(uniform()+.5) ;

dcorrupt[i] = 2 * ((float) (d[i]))-I ÷ std*gasdev(idum) ;

)

for(i=0;i<numbits;i++){sysfb[i]=0;}

stat = 0;

for(i=0;i<numbits;i++)( /* making pl bits */
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pl */

*/
stat

pl[i] = ((float) (outl[stat] [d[i]]))*2

star = transl[stat] [d[i]];

}
for(i=0;i<=numbits-l;i++) if(i%2 != 0){pl[i]

interint(d,M, intoint,outofint);

-i + std*gasdev(idum) ;

= 0.0;} /* puncturing

/* interleave to make p2 bits

= 0;

for(i=0;i<=numbits-l;i++){

p2[i] = ((float) (out2[stat] [d[i]]))*2-1

stat = trans2[stat] [d[i]];

}
for(i=0;i<=numbits-l;i++) if(i%2!=l){ p2[i]

+ std*gasdev(idum) ;

= 0.0;) I*

puncturing p2 */

deinterint(d,M, intoint,outofint);

for(i=0;i<=numbits-l;i++){ /* truncate to prevent

if(dcorrupt[i]>max)(dcorrupt[i]=max;}

if(dcorrupt[i]<-max) {dcorrupt[i]=-max;}

if(pl[i]>max)(pl[i]=max;)

if(pl[i]<-max){pl[i]=-max;)

if(p2[i]>max){p2[i]=max;]

if(p2[i]<-max){p2[i]=-max;]

]

overflow */

numerr= checkerr(d,dcorrupt,numbits); /* see how many errors there

are originally */

file_num_errs[0] += numerr;

printf(" number of errors for %d bits after 0

\n",numbits,numerr);

printf(" error percentage = %f

\n", ((float)numerr)/((float)numbits));

iterations is %d

for(i=l;i<=numits;i+÷)( /* turbo decoding process useing process from

Robertsons paper */

decoutl(numbits,outl,transl,numstatesl,dcorrupt,sysfb,pl,N,alfal,betal);

/*first decoder uses pl to build info. Output of decoder is in sysfb */

for(j=0;j<numbits;j++){ intrinsic[j] = sysfb[j];} /* stores

output of first decoder for errorchecking purposes */

interfloat(sysfb,M, intofloat,outoffloat); /* interleave inputs to

dec2 */

interfloat(dcorrupt,M, intofloat,outoffloat);

decoutl(numbits,out2,trans2,numstates2,dcorrupt,sysfb,p2,N,alfal,bet

al);

is in

/* output of dec2 is built by p2. Again output of

sysfb*/

deinterfloat(sysfb,M, intofloat,outoffloat);

deinterfloat(dcorrupt,M, intofloat,outoffloat);

this decoder

for(j=0;j<numbits;j++){ intrinsic[j] =

+ (2/(N))*dcorrupt[j];}

numerr=checkerr(d, intrinsic,numbits);/*

errors */

if(numerr == 0){i=numits+l;)

intrinsic[j] + sysfb[j]

checking number of

file_num_errs[i] ÷= numerr;

printf("number of errors for

\n",numbits,i,numerr);

%d bits after %d iterations is %d
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printf(" error percentage = %f

\n,, ((float)numerr)/((float)numbits));

}
}
/* print results to a file */

fprintf(inl,"gl is ");

fprintf(inl,"kn");

fprintf(inl,"%d %d %d %d %d \n%d %d %d %d

%d,,,gl[0] [0],gl[0] [l],gl[0] [2],gl[0] [3],gl[0] [4],gl[l] [0],gl[l] [l],gl[l] [2

],gl[l] [3],gl[l] [4]);

fprintf(inl,"\n\n");

fprintf(inl,"g2 is \n");

fprintf(inl,"%d %d %d %d %d \n%d %d %d %d

%d",g2 [0] [0] ,g2 [0] [I] ,g2[0] [2] ,g2[0] [3] ,g2[0] [4] ,g2[i] [0] ,g2 [i] [i] ,g2 [I] [2

] ,g2[l] [3] ,g2 [i] [4]) ;

fprintf(inl,"\n \n ");

fprintf(inl,"Eb/No is %f \n",EbNo);

fprintf(inl,"number of blocks is %d \n",numblocks);

fprintf(inl,"number of bits/block is %d \n",numbits);

for(i=0;i<=numits;i++){

fprintf(inl,"number of errors for %d iterations is %d BER = %f

\n",i,file_num_errs[i],

((float) (file_num_errs[i]))/((float) (numblocks*numbits)));

}
fclose(inl);

}

/* MAP decoding function. */

/* function returns the estimate in sysfb */

void decoutl(int numbits,int **out,int **trans,int numstates, float

*sysreal,float *sysfb, float *parity, float N, float **alfa,float **beta){

float bsysreal[2],bpar[2],bfb[2],templ,temp2,mz=0,probzero,probone;

int i,j,k,l,m; /* indexs */

* alfa and beta follow bahl et.al. '73 */

* bpar, bfb, and bsysreal are components of gamma, it is done this way to

save processing time */

* probone and probzero are temporary variables to get log likelihood

value*/

for(i=0;i<numstates;i++){ /* initialize alfa, beta */

for(j=0;j<numbits;j++){

alfa[i] [j] = 0;

beta[i] [j] = 0;

}

)

alfa[0] [0] = 1.0; /* initialising alfa *

/* computes all alfa's */

for(i=0;i<numbits;i++){

bsysreal[0] = exp(-((sysreal[i] + l)*(sysreal[i] ÷ i)

components for gamma */

bsysreal[l] = exp(-((sysreal[i] - l)*(sysreal[i] - i)

bpar[0] = exp(-((parity[i] + l)*(parity[i] + I))/N);

bpar[l] = exp(-((parity[i] - l)*(parity[i] - I))/N);

bfb[l] = (exp(sysfb[i]))/(l+exp(sysfb[i]));

bfb[0] = l-bfb[l];

templ= 0;

temp2 = 0;

for(m=0;m<numstates;m++){

/N) ;

/N) ;

/*
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for(l=0;l<=l;l++){

templ=alfa[m] [i]*bsysreal[l]*bfb[l]*bpar[out[m] [I]];

alfa[trans[m] [i]] [i+l] ÷= templ;

temp2 += templ;

}
) /* calculates alfa for the next i */

for(m=0;m<numstates;m++)(

alfa[m] [i+l] = alfa[m] [i+l]/temp2;

)

/* alfa is done */

/* normalize */

/* initialize beta at the last time */

for(i=0;i<numstates;i++){

beta[i] [numbits] = 1.0/((float) (numstates)) ;

)

for(i=numbits;i>0;i--){ /* recursively calculate beta */

bsysreal[0] = exp(-((sysreal[i-l] + l)*(sysreal[i-l]

components for gamma */

bsysreal[l] = exp(-((sysreal[i-l] - l)*(sysreal[i-l]

bpar[0] = exp(-((parity[i-l] + l)*(parity[i-l]

bpar[l] = exp(-((parity[i-l] - l)*(parity[i-l]

bfb[l] = (exp(sysfb[i-l]))/(l+exp(sysfb[i-l]));

bfb[0] = l-bfb[l];

templ= 0;

temp2 = 0;

for(m=0;m<numstates;m÷+){

for(l=0;l<=l;l++)(

templ =

beta[trans[m] [i]] [i]*bsysreal[l]*bfb[l]*bpar[out[m] [I]];

beta[m] [i-l]+=templ;

temp2 ÷= templ;

}
}

+ I))/N);

- i) ) /N) ;

+ I))/N);

- I))/N) ;

/* calculates beta for the next i */

/*

for(m=0;m<numstates;m++){

beta[m] [i-l] = beta[m] [i-l]/temp2;

]

} /* beta is done */

/* now to put it together to get approximation of output */

/* and put it in sysfb */

for(i=0;i< numbits;i+÷){

bpar[0] = exp(-((parity[i] + l)*(parity[i] ÷ I))/N);

components for gamma */

bpar[l] = exp(-((parity[i] - l)*(parity[i] - I))/N);

probzero = 0;

probone = 0;

for(m=0;m<numstates;m++){

for (j=0;j<=l;j++) {

if (j==0) {

probzero +=

alfa[m] [i]*beta[trans[m] [0] ] [i+l]*bpar[out[m] [0] ] ;

]

else{

probone +=

alfa[m] [i]*beta[trans[m] [i]] [i+l]*bpar[out[m] [i]];

]

/* normalize */

/*

/* go through all the states */
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)

}
sysfb[i] = log(probone/probzero);

}
for(i=O;i<=numbits-l;i++){ /* truncate to

if(sysfb[i]>17){sysfb[i]=17;)

if(sysfb[i]<-17){sysfb[i]=-17;)

prevent overflow

)
)

/* program to check errors */

int checkerr(int *d, float *sys,int

int sum=O,i;

for(i=O;i<numbits;i++) {

if(d[i] == 0){

if(sys[i]>=O){

sum++;

}

else{

)

return sum;

numbits){

if (sys[i]<=O) {

sum++;

)

void interfloat(float *data,int M, float **into,float **outof){

int i,j;

int p[8]={17,37,19,29,41,23,13,7),inc,ir,jr,eps;

/* this is from berrou '95 */

inc = O;

for(i=O;i<M;i++){

for(j=O;j<M;j++) {

into[i] [j] =data[inc++] ;

)

}

for(i=O;i<M;i÷+){ /* read out of the

for(j=O;j<M;j;+){

ir = ((M/2 +l)*(i+j))%M;

eps = (i+j)%8;

jr = ((p[eps]*(j+l))-l)%M;

outof[i] [j] = into[ir] [jr] ;

)

)

inc=O; /* read it back into the data

for(i=O;i<M;i++){

for(j=O;j<M;j++){

data[inc]=outof[i] [j];

inc++;

)
)

void deinterfloat(float *data,int

int i,j;

int

/* load into matrix */

matrix */

stream */

M, float **into,float **outof){

p[8]={17,37,19,29,41,23,13,7),inc,ir,jr,eps;
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/* this is from berrou

inc = O;

for (i=O; i<M; i++) {

for (j=O; j<M; j++) (

outof [i] [j]

}

}

for (i=O; i<M; i++) {

for (j=O; j<M; j++) (

'95 */

= data[inc++];

ir = ((M/2 +l)*(i+j))%M;

eps = (i+j)%8;

jr = ((p[eps]*(j+l))-l)%M;

into[ir] [jr] = outof[i] [j];

]

}
inc=O;

for(i=O;i<M;i++){

for (j=O; j<M; j++) {

data[inc] =into[i] [j] ;

inc++;

}

*data,int M, int

}
}

void interint(int

int i,j;

**into,int **outof){

int

/* this is from berrou '95 */

inc = O;

for(i=O;i<M;i++) {

for(j=O;j<M;j++){

into[i] [j] =data[inc++];

}
}

for(i=O;i<M;i++){

for(j=O;j<M;j++){

ir = ((M/2 +l)*(i+j))%M;

eps = (i+j)%8;

jr = ((p[eps]*(j+l))-l)%M;

outof[i] [j] = into[ir] [jr];

p[8]={17,37,19,29,41,23,13,7},inc,ir,jr,eps;

/* load

]
}
inc=O ;

for(i=O;i<M;i++)(

for(j=O;j<M;j÷+){

data[inc]=outof[i] [j];

inc++;

]
}

}
void

/* load into matrix */

deinterint(int *data,int M, int **into,int
int i,j;

int P[8]={17,37,19,29,41,23,13,7},inc,ir,jr,eps;

/* this is from berrou '95 */

inc = O; /* load

for(i=O;i<M;i÷÷)(

for(j=O;j<M;j++){

outof[i] [j] = data[inc++];

into matrix */

**outof){

into matrix */
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)

)
for(i=0;i<M;i++) {

for(j=0;j<M;j÷+){

ir = ((M/2 +l)*(i+j))%M;

eps = (i+j)%8;

jr = ((p[eps]*(j+l))-l)%M;

into[ir] [jr] = outof[i] [j];

}

)
inc=0 ;

for(i=0;i<M;i++) {

for(j=0;j<M;j++){

data[inc]=into[i] [3];

inc++;

}

)

)
int encode(int **g,int in, int *state,int mem)

/* program to help generate output and state transition matrices, it takes

the generator matrix, the input, and the state (in integer form) and

returns the output value and the transition state (in *state).

memory

is size of number of delay units. To see how this is done look at

berrou et.al. */

{
int i, k, a[4]={0),b[4]={0}, c = 0,fb;

k = state[0];

binstat( k, mem, a);

c += in;

for(i=l;i<=mem;i÷+){

c += a[i-l]* g[0] [i]; /* determines feedback bit c */

)
fb = c%2;

c = fb;

for(i=l;i<=mem;i++)(

c += a[i-l]*g[l] [i]; /* c is the outputed bit now. */

)
c = c%2; /* now to get the next state */

for(i=0;i<mem--l;i++)( /* shifting previous state */

b[i+l]=a[i];

)

b[0] = fb; /* putting feedback bit into

first space */

state[0] = intstat(mem, b);

return c;

)
void binstat(int k, int m, int *mvect)

{ /* converts k into m bit row vector */

int i;

for (i=m;i>0;i--)

{
mvect[m-i]=(int) (k/((int)pow(2,i-l)));

k -= mvect[m-i]*pow(2,i-l);

)
}

int intstat(int m, int *mvect)
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( /* converts a m bit row vector, *mvect, into an integer k */

int i,k=O;

for(i=O;i<m;i++)(

k += mvect[i_*(int) (pow(2,m-i-l)) ;

)
return k;

)




